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Narrow-tube approximation of semiclassical quasi-energies: 
application to the weakly nonlinear Duffing oscillator 
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t Department of Mechanics, Royal Imtitute of Technology, S-10044 Stockholm, Sweden 
% Fachbereich Physik, UniversiW Kaiserslautem D-6750 Kaisenlautem, Germany 

Received 21 February 1994 

AbstracL An e m t  transformation of semiclassical quantization conditions determining quantal 
quasienergies of time-periodic €Idtonkm system is suggested. For motion on voltex tubes 
centred at stable periodic orbits the classical quasienergy of the underlying periodic orbit 
sepmtes aut as a single term which is a lower bound for the quantized quasienergies. A 
particular appmximation involving the classical Lewis invariant for calculating semiclassical 
quasi-energies near the centre of a pertarbed linear response is discussed in some detail. 

1. Introduction 

The proper framework for describing T-periodic Hamiltonian systems quantum mechani- 
cally is the theory of Flcquet or quasi-energy states (QBS). Quasi-energy states are special 
solutions of the time-dependent Schdinger equation with the properry 

WG(x, t + T )  = exp(-icT/h)W&, I) (14  

and having the form 

W&, t )  = exp(-ist/h)@,(x, t )  (W 

where @ < ( x ,  t) = @<(x,  t + T) is a T-periodic function and E is called the quusi-energy 
[I]. The quasi-energy states can be viewed as one-dimensional unitary representations of 
the symmetry group of discrete time @anslations by nT, n = 0, f l ,  12.  . . ., and the quasi- 
energies 6 determine the characters exp(-knT/fi) of the corresponding representation. 
Hence, the quasi-energy states play the same role as stationary states do for time-independent 
Hamiltonians. In particular the functions t) satisfy a kind of ‘timeindependent’ 
Schriidinger equation 

I?@&, t )  = E @ < ( X ,  t )  (2) 

where I? = [ H ( t )  - iha/at] is a Hermitian operator in the product Hilbert space L2 of T- 
periodic functions [l]. In this formalism, many quantum-mechanical theorems for the time- 
independent Schriidinger equation are applicable to the solutions of (2) like the variational 
principle, the Hellman-Feynman and the Hypervirial theorem, and also the perturbation 
theory for the quasienergy states can be developed in close analogy to the timeindependent 
case [l]. 

OU)5470/94/165673t13$l9SO @ 1994 IOP Publishing LM 5613 



5674 K-E Thylwe and F Bensch 

Recently Breuer and Holthaus [2] employed the Maslov construction of canonical 
operators to derive two sets of semiclassical quantization conditions for the quasi-energies 
and FIoquet states of periodically timedependent systems. Whereas the first set is identical 
to the usual EBK quantization rules selecting those classical vortex tubes (tori) with quantized 
actions I,,, the second set fixes the corresponding quasi energies e,, (up to multiples of 
fr2n/T). The latter requires the integration of the PoincarWartan form a’ = p dx - H dt 
along a periodic path of the quantized vortex tubes, which is a non-hivial task and has 
been done analytically only for two cases, namely the periodically forced [2] and the 
parametrically excited harmonic oscillator [3]. 

41 

-5-0 

Flgure 1. Graphical 3~ illustration of a vortex lube spiralling hough extended phase space in 
a helix-like, tim-pricdic manner. 

In order to treat the general case (see figure I), when the vortex tubes may weave in a 
complicated (heli-like) manner through extended phase space [ p .  p t ,  q,  t ) .  the second set 
of quantization condition has been rewritten by Bensch, Korsch and Mirbach [4] in terms 
of actual trajectories which wind around the vortex tubes. A first numerical application to 
a frictionless. periodically driven Duffing oscillator yielded semiclassical quasi-energies in 
excellent agreement with the exact quantum mechanical ones. However, there are a number 
of open questions that need further investigations. 

In this investigation we focus on an analytic understanding of the general behaviour 
of quasi-energies near stable periodic motion of the classical system. Typically there are 
many periodic trajectories, harmonic and subharmonic, in a nonlinear classical oscillator 
of the Duffing type, When stable, they are centres of elliptic islands of various sizes in 
the Poincare cross-section. The nested vortex tubes of the quasi-periodic classical motion 
near a periodic Centre show up as level lines surrounding the fixed point in the Poincare 
cross-section, as illuswated in figure 2 Our approach to understanding the quasi-energy 
spectrum is closely related to this picture of ‘local energy wells’ in phase space. We 
develop a narrow-tube approximation for the semiclassical quasi-energies which applies 
quite generally to any elliptic island of the phase space map. However, we illustrate the 
details only for the elliptic island corresponding to the main, small-amplitude harmonic 
response of the periodically forced Duffing oscillator, which is the centre closest to the 
origin of phase space in figure 2. 
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Figure 2. Illusoation of the two main stable responses @xed points in the Pain& cross- 
section) for the weakly nonlinear Duffing oscillator (s = 0.05). The level lines sunounding the 
centres correspond to the cross-section of nested vortex hlbes. Calculations discussed in the text 
refer to cases of slightly weaker nonlinearities, where the large-amplitude fixed point is shilled 
funher to the right in the figure. 

In section 2 we discuss the Duffing oscillator and a timedependent canonical 
transformation to coordinates of the reference frame moving with the periodic response. 
Semiclassical formulae for determining quasi-energies are also reviewed. Section 3 deals 
with the centre motion itself and its contribution to the quasi-energy. Approximate, analytic 
formulae are obtained. In section 4 we develop the narrow-tube approximation for describing 
the phase space dynamics near the centre motion and from this we obtain quasi-energy 
formulae. In the adiabatic l i t  we find simple analytic formulae. Numerical results are 
discussed in section 5, and some conclusions are given in section 6. 

2. The forced Duffig oscillator: perturbed linear case 

The time-dependent Hamiltonian 

H ( p ,  q ,  t )  = + ( p 2  + kq2 + $q4) - rqcos(t) (3) 

describes the classical motion of the excited Duffing oscillator through Hamilton’s equations. 
The Hamiltonian is conveniently written in a form where the linear force constant k, the 
excitation amplitude r and the strength of the nonlinearity s are the three system parameters. 
For general system parameters the motion can be either periodic quasi-periodic or irregular 
(chaotic), depending on initial conditions. For the time being we assume the existence of 
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a stable periodic orbit q, of period T = 2z. The motion near the periodic response is 
correctly described by the nonlinear variational equation, an equation usually written in 
tenns of a relative coordinate Q = q - q,. The correct Hamiltonian corresponding to the 
relative motion is obtained by a proper time-dependent canonical transformation (see [5] 
and [6] for a general background): 

K-E Thylne and F Bensch 

(P, 4)  + (pv Q) E (P - 4,s - qp) (4) 

where a dot ' denotes a differentiation with respect to time. A time-dependent generating 
function for the transformation is 

Fz.(P, q,  f) = (Q -qp)(P + 4,) (5) 

which, as usual, satisfies the pair of equations 

The transformed Hamiltonian K(P. Q, I) can now be obtained in the standard way [5] 
from the original one in equation (3): 

KV', Q, r )  = H ( P ,  Q, 0 + (Q + qpMp - P4p - 4: - 4pqp 

= f P2 + $(k + 3sq;) Q2 + sqpQ3 + $se4 
+ Qrq, + kq, + sqi - r cosWl 

- {L 2 qP "- kkq; - $sqi t qpr cos(t)].  (7) 

Since we have chosen a periodic solution qp to the forced Duffing oscillator, the expression 
multiplying Q in the third line of (7) vanishes and the last line may be identified as the 
Lagrangian of the centre motion. The simplified expression for the new Hamiltonian is now 

(8) K(P,  Q, t )  = fPZ + $(k + 3sq:)Q2 + sqpQ3 + ;se4 - L,. 
Apart from the centre motion Lagrangian, L,, which depends only on the underlying 
periodic trajectory and does not enter into the dynamical equations of motion, there are 
other terms in (8) which correspond to a Hamiltonian, hml, of a parameeically driven, 
nonlinear (anharmonic) oscillator. The motion of that oscillator are solutions satisfying the 
differential equation: 

Q + (k + 3sq;)Q + 3sqPQz + s Q 3  = 0. (9) 

This can be seen as a nonlinear variational equation with respect to any periodic solution 
q, of the forced Duffing oscillator. 

The calculation of quasi-energies can proceed in several ways. The semiclassical 
procedure [ 2 4 ]  involves the quantization of vortex tubes in the odd-dimensional extended 
phase space {(P, Q, t ) ]  by means of the Poincar6-Cam.n form [5,7] 

0' = P d Q  - K d t  
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a geometric generalization of the Lagrangian function. In the present three-dimensional case, 
two 'geometrically' periodic quantization paths, representing the two different homology 
classes of the tube, can be constructed such that yt lies on the cross-section of the tube in 
a Poincar6 surface of section t = 0, and where n stretches periodically (n(0) = n ( T ) )  
along the tube from t = 0 to t = T in such a way that it can be diffeomorphically projected 
onto the f axis (i.e. onto the interval [O, TI). Now, quantizing the first of the integrals, 
namely 

leads to a discrete selection of vortex tubes. The subsequent evaluation of the quasi-energies 
along these tubes then follows from 

1 c = - -  
T s,uI 

apart from trivial additional multiples of h2n/T;  see [Z]. Equation (11) can be taken as a 
definition of the classical quasi-energy of motion on periodic vortex tubes in general, not 
necessarily the quantized ones. 

The integrals &,, U' and [,, U' are manifestly invariant under timedependent, time- 
periodic canonical transformatlons [2,5]. Therefore the two quantization integrals can be 
expressed in terms of our relative canonical variables P and Q, of the Hamiltonian (8) 
or some other pair of canonical coordinates P' and Q' with the pertinent Hamiltonian 
K'(P', Q', t). The invariant 'definition' of the quasi-energy may take a particularly simple 
form if we choose a path n with P' = 0, which is peculiar to accelerated frames of 
reference attached to the periodic centre motion qp. With the restriction P' = 0 we are 
using a path fi which is tracing out one of the huning points of motion along the tube. As 
an alternative, geometric formula for calculating the classical quasi energy we now have 

I 
E = I,, K'dt. 

This we think is an interesting classical result. However, equation (12) is not a single- 
trajectory formula in the ordinary sense and cannot be identified with a time-averaged 
transformed Hamiltonian. With the Hamiltonian K ( P .  Q, t )  in (8), it is, however, 
straightfmard to convert the L, part, which is a periodic function of time, to a time- 
averaged single-trajectory quantity (.Lp)t. Hence, in th is  case 

The decomposition of the quasi-energy formula in two parts, as explicitly shown in (13) but 
also hidden in (U),  reveals a quasi-energy structure of local wells at the (periodic) fixed 
points of the Poincar6 map. Classically, the quasi-energy at the stable periodic centre is 
given by -(Lp),. The nested vortex tubes, as far as they exist, correspond to level lines 
of increasing quasi-energy. As for developing approximate analytical formulae, the two 
contributions to the quasi-energy need separate considerations which will be dealt with in 
section 3 and section 4, respectively. 
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3. Periodic centre motion 

In this section we describe the most dominating harmonic responses of the excited Duffing 
oscillator when the nonlinearity parameter s is  small. We also study in more detail the 
specific periodic motion qp which is relevant for the numerical applications in section 5 
and for some analytic expressions in section 4 approximating (Lp), in the quasi-energy 
formula (13). 

A symmetric, approximate solution with period 1T can be sought with a leading term 
of a general Fourier series given by 

qp = Fcos(t) + .. . . 

K-E Thylwe and F Bensch 

(14) 

Inserting and equating the leadiig-order terms (see. [8] for the harmonic balance method), 
we find 

(-F + k F  + qsF3) cos(f) = r CO@). (15) 

The cubic equation (15) for F suggests the co-existence of three real, periodic solutions 
that we will briefly describe. Assuming the forcing amplitude r has a fix value, we obtain 
from (15) the following relation between k and F: 

k = l + - - - s F ,  ‘ 3 2  
F 4  

There is a negative-F branch of the ‘function’ k(F) in (16). which corresponds to two 
out-of-phase responses (for given negative k there are two matching negative Fs), and a 
positiveF branch corresponding to a single in-phase response. Folding the negative-F 
branch onto the positive-F side, by taking the modulus of F ,  we obtain the nonlinear 
resonance curve in figure 3. The resonance curve for the present Duffing oscillator is 
tilted in a characteristic way so that large-amplitude responses behave quite differently from 
responses in a h e a r  oscillator. We see in figure 3 that for given negative and small positive 
values of k there is now one small-amplitude response and two large-amplitude responses. 
We know from standard perturbation analysis [9] that the largest solution, which is inphase 
with the excitation, is the stable one together with the small-amplitude out-of-phase solution. 
The other large solution is unstable. 

We are particularly interested in cases where there are several periodic responses, and, 
hence, competing sets of vortex-tube motion. In the numerical study of section 5 we consider 
the case k = 0.168’ 4 0.38, which for sufficiently small forcing r and nonlinearity strength 
s admits more than one dominating, periodic response of the Duffing oscillator. On the 
other hand we did not want the appearance of too many periodic (subharmonic) responses 
or irregular motion of small amplitude in this study, so our choice of k had to meet a 
requirement of not being too close to zero. Furthermore, the most favourable solution to 
approximate by the single-term Fourier ansatz (14) is the small-amplitude response. This 
response therefore specifies the centre motion qp for the vortex tubes we should l i e  to 
quantized. 

A crude analytic approximation of the small-amplitude solution may be obtained by first 
neglecting the quadratic term on the right-hand side of equation (16). For k # 1, we find 

r FE-- 
1 - k  
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h 

Figure 3. ? l e  classical ampliNde-response c w e  bnm equation (16). for the main harmonic 
responses of the weakly nonlinear Duffing oscillator. Both c w e s  correspond to an excitation 
amplitude r = 05. 

which is a fair singlefrequency approximation for small excitation amplitudes and k not 
too close to 1 .  

It is desirable, however, to find a better approximation for F ,  which also incorporates 
the effects of the so far neglected nonlinear term. We suggest rewriting equation (16) in 
the alternative form: 

r 
k - 1 + : sFZ 

F =  

and solving by iterating twice, starting with s = 0. We then find a second approximation 
for the amplitude F of the form 

r 
k - 1 +:si&' 

F =  

The quasi-energy contribution from the centre motion qp is given by (-.Le),. This 
quantity will be calculated both 'exactly' (the notation (-Lp)m refemng to'the 'exact' 
narrow-tube result) according to 

(-LP)m = (-44; + kkq; + asqp'+ qprcos(t))t (204 
and approximately, according to the approximation qp M F cos(t) together with (19). Hence, 
it is shaightfmvard analysis to derive the following approximate centre-motion contribution 
(denoted ~ (-Lp)A): 

( - L p ) ~  = i F 2 ( 1  - k )  - $sF4 .  
We note that F in (206) actually depends on the nonlinearity parameter s through 
equation (19). 

Next we investigate the contribution from the assumed narrow tubes ceneed at the 
periodic response. They are originally described by relative coordinates with the origin 
moving with the periodic response, as explained earlier. 
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4. Narrow-tube approximation 

We may start from the Hamiltonian in (8) and try to obtain some approximate analytic 
understanding of the vortex tubes close to the centre. Even if we neglect cubic and quartic 
terms in the Hamiltonian, the resulting Hill Hamiltonian is not easy to approach. We shall 
see that it is possible to invoke a further canonical transformation in order to obtain analytic 
results. In this section we invoke the classical Lewis invariant [IO] to separate time and 
phase space. This approach allows an adiabatic simplification which is also discussed in 
some detail. 

4.1. Lewis invariant approach 

In the zeroth-order approximation we consider the quadratic Hamiltonian: 

K-E Thylwe and F Bensch 

Ko(P, Q ,  t )  = $P2  + i(k +3s@QZ - Lp. (21) 

This is our Hill oscillator that can be treated exactly by a fulther time-dependent. canonical 
transformation. Let us introduce the canonical coordinates 

P' = - QP(0 Q' = Q / p ( t )  (22) 

with p( t )  being an arbitrary positive function, yet to be determined. A time-dependent 
generating function Gz(P', Q,  t )  for the canonical transformation equation (22) is given by 

satisfying 

The time-dependent canonical transformation of the Hamiltonian KO gives 

aGz KL(P', Q'. t )  = K o W P ' .  Q', 0 ,  fXQ', 0.0 + - 
at 

We now require p(r)  to be a periodic solution of the auxiliary Milne equation 

where 

&t) = k + 3sq;(t). (27) 

Then by virtue of such a solution p(t) ,  the transformed Hamiltonian (25) has the form 
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and KA is a periodic function of time because p(t )  and Lp(t)  are so. We have made a 
transformation to new canonical coordinates in which the so-called Lewis invariant [lo], I, 
takes the form 

Z = ;[Pa+ Q']. (29) 

One can verify that the EBK quantization condition for the tubes leads to 

&i P'dQ' = I = (n+ f )E 

using the new coordinates and the Lewis invariant. The zeroth-order quasi-energy is now 

€0 = - l T K 6 ( O d t  = (~-~( t ) ) t (n  + - (Lp(t))t (31) 

where we have introduced the time-averaged quantities ( ~ - ~ ( t ) ) ,  and ( L p ( t ) ) l .  This is an 
'exact' semiclassical result in the narrow-tube limit. In order to get an estimate of the quasi- 
energy corresponding to the original Hamiltonian function K ( P ,  Q, t ) ,  containing cubic and 
quartic terms in Q, we use the narrow-tube coordinates P' and e'. The same canonical 
transformation leads to the Hamiltonian 

LpW 
aGz 
at 

K'(P', Q', t )  = K ( P ,  Q, t )  + - - 
1 

(32) 

This Hamiltonian still depends on both t and (P', Q'). The contour lines I = constant of 
equation (29) define circles in the (P', Q') coordinates. Going over to polar coordinates 
( I ,  rp), i.e. the action-angle variables of KO. defined by 

= -[Pa + Q'] +sqp(r)p3(t)Q" + $p4(t)Q" - L,(t) .  
2P2(t) 

Q'=ficosrp P'=JZfsinrp 

the transformed full Hamiltonian may be rewritten as 

K'(z,  p, r )  = p - 2 ( t ) ~  + ~ q , ( t ) p ~ ( t ) ( 2 ~ ) ~ ' ~ c o s ~ r p  + s ~ ~ ( ~ ) I ~ c o s ~ ~  - ~ ~ ( t ) .  (33) 

We now introduce the approximate Hamiltonian &(I, t ) ,  which we obtain kom K'(Z, rp, t )  
in (33) by a timeindependent averaging with respect to the angle rp. Hence, 

E'(Z, t )  = (K'(Z, rp, t))r = zp-Z(t) + %sIZp4(t) - Lp(t) .  (34) 

The narrow-tube approximation (NT) of the geometric path formula (13) for the quasi-energy 
now yields 

where the Lewis invariant has been quantized according to equation (30), and (-LP)m has 
been introduced from (2Oa). 
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4.2. Adiabafic limit 

Approximating the periodic Milne solution by its adiabatic expression p ( t )  FJ I/-. 
which we assume is not singular at any real time, we obtain the adiabatic narrow-tube 
formula: 

K-E Thylwe and F Bensch 

(36) 1 2 2  
EA = (@)r(n f $)h + $s('d-2)f(?l + 7) h - (Lp)f .  

By employing the single-frequency approximation to equation (27): 

w ( f )  = Jk + 3sFZcosZ(t) 

the time averages (a@)), and (o-2(f))t appearing in (32) may further be consistently 
approximated in the weakly nonlinear case by the expansions 

27 s Z F 4  

6 4 k  
- - (-) ) 

and 

27 s 2 + - 8 k  (-) F4) 

(37) 

F being given by equation (19) in our applications; see section 5. In this approximation 
step we obviously need s/k to be sufficiently small. It is of interest to point out that the 
actual initial positions of classical trajectories on the quantized tubes do not enter explicitly 
in any of the formulae (38) and (39). 

The geometrical-path formula (38) based on the narrow-tube approximation can now be 
compared numerically with formula (39), based on the adiabatic simplification of (38). As 
reference results we have also performed calculations of the related quasi-angle .9 = <T/h 
(mod2n) based on the semiclassical numerical routines developed in [4]. 

5. Numerical results 

In the numerical part of this work we compare the semiclassical quasi-energies E and quasi- 
angles 0 = 6 t / h  from the narrow-tube (NT) formula (35) and its adiabatic (A) limit (36) 
(including equations (21). (37) and (38)) with the results of the full semiclassical routines 
(sc) given in [4]. In tables l(a)-(d) we kept two of the system parameters k = 0 ~ 5 1 8 ~  
and r = 0.5 fixed, while varying the nonlinearity parameter s = 0.0, 0.01 ,0.02,0.03. In 
a companion table, table 2, we have collected some numerical data on the centremotion 
contributions (-L )m and ( - L p ) ~ ,  and the location of the periodic Milne solution po(0). 

In table I(Q) we consider the test case s = 0, where everything can be compared with 
exact results. For all nested tubes we have used the exact fixed point qp(0) = -r / (  1 - k) 
for the underlying periodic motion. Its contribution to the quasi-energy is the same for all 
nested tubes and given in table 2. There is complete agreement between the (NT) and (A) 
results, as there should be, since the analytic formulae contain no approximations for s = 0. 

In tables I (bHd)  there is good agreement between the quasi-energies cm and E A .  
although there are many approximations involved in obtaining CA. We note that the quasi- 
energies ENT are larger than the corresponding EA throughout the tables. All semiclassical 

The tolerance 10- 3 .  IS used throughout the numerical computations. 
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Table 1. The four leading quasienergies and the corresponding quasi angles obtabed from 
full semiclassical (E), narrow-hlbe (NT) and adiabaiic narrow-tube (A) calculations. The system 
parameters k = 0.61S2 and r = 0.5 are b e d ,  while the nonlinearity parameters is varied ((a) 
s = 0.0, (b)  s = 0.01; (c) s = 0.02; ( d )  s = 0.03). 

s = 0.0 0 0.4102 0.410 120 0.410120 25769 2.576862 2.576862 
I 1.0281 1.028120 1.028120 0.1767 0.176685 0.176685 
2 1.6461 1.646120 1.646120 4.0597 4.059693 4.059693 
3 2.2641 2.264120 2.264120 1.6595 1.659516 1.659516 

s =O.Ol 0 0.4170 0.41694 0.41689 2.6201 2.61970 2.61940 
I 1.0621 1.06211 1.06203 0.3901 0.39027 0.38972 
2 1.7250 1.72643 1.726 31 4.5535 4.56427 4.563 51 
3 2.4047 2.40988 2.40973 2.5428 2.575 34 2.57441 

s = 0.02 0 0.4241 0.4238 0.4235 2.6642 2.6625 2.6612 
I 1.0960 1.0953 1.0950 0.6029 0.5990 0.5968 
2 1.8021 1.8042 1.8038 5.0395 5.0530 5.0502 
3 2.5401 2.5504 2.5499 3.3935 3.4581 3.4552 

s = 0.03 0 0.4312 0.4306 0.4301 2.7096 2.7054 2.7024 
1 1.1309 1.1278 1.1271 0.8227 0.8032 0.7984 
2 1.8834 1.87% 1.8788 5.5509 5.5268 5.5214 
3 2.6930 2.6859 2.6852 4.3343 4.3097 4.3051 

Table 2. Numerical data on the centre-motion contributions (-Lp)m and ( - L p ) ~  corresponding 
to the small-amplihrde response, and the location of the periodic Milne solution m(0). System 
parameters are the same as in tables l (aHd).  

s (-Lp)w ( - L ~ ) A  d o )  
0.0 0.101 12 0.101 12 1.27205463 
0.01 0.101 52 0.101 50 1.26906632 
0.02 0.10195 0.10184 1.266365 15 
0.03 0.10239 0.10214 1.26398277 

results are in good agreement for all the quantized tubes shown in the tables. When 
converted to quasi-angles this agreement does not look as impressive. However, the 
agreement between 6~ and EA is striking, although we did not particularly choose the 
system parameter k to make the adiabatic conditions ideal; the larger k is, the more adiabatic 
is the system. 

Table 2 reveals that the centre motion does not contribute a lot to the quasi-energies 
in this case. The reason is mainly that the amplitude of the centre motion is small in this 
study. A slight increase of the centre-motion contribution as a function of the nonlinearity 
seems to contradict formula (21). A closer analysis shows that the nonlinearity dependence 
of F is responsible for this marginal increase of the centre-motion quasi-energy. 

Finally in table 3 we take a brief look at the quasi-energy levels of the motion near the 
large, stable harmonic response for s = 0.03 in figure 3. We do not have a simplifying 
adiabatic approximation in this case but the basic narrow-tube formulae (31) and (35) could 
still be tested against full semiclassical calculations. For the centre motion we find a large 
negative contribution, (-.&,)in = -3.421 94052, to the quasi energy. The quasi-energy 
'well' seems to be much deeper in this part of phase space. The periodic Milne solution 
is found at po(0) = 0.404568064. To our surprise the leading-order formula (31) is 
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Table 3. Quasi-energy levels and the corresponding quasi-angle associated with the large. stable 
harmonic response.. (see figues 2 and 3). Indices refer to full semiclassical (K) and leading-order 
(0) n m w - r u b  calculations. The system parameten are the Same as in table l (d) .  

n csc EO BSC so 
0 -2.8445 -2.8439 -5.3059 -5.3024 
1 -1.6907 -1.6878 -4.3399 -4.3217 
2 -0.5391 -0.5317 -3.3871 -3.3410 
3 0.6096 0.6243 3.8300 3.9229 

optimal, the correction term in (35) causes a positive shift (of the order 0.012 for n = 0) 
in the quasi-energy, further away &om the full semiclassical result. We realize that the 
approximate averaging procedure for estimating the contribution from the cubic and quartic 
terms in the Hamiltonian (32). and which led us to neglect the cubic term, may not be 
appropriate if the periodic response q, has a large amplitude. The negative quasi-angles in 
table 3 reflect the negative values of the corresponding quasi-energies. 

6. Discussion 

We have considered (principle) quasi-energy states that are localized on vortex tubes (tori) 
around a stable periodic orbit in phase space. For such states the narrow-tube formulae seem 
to be valuable semiclassical estimates of the quantal quasi-energies- a direct comparison 
with the full semiclassical quantization procedure shows 141. 

Furthermore, the quasi-energy has been decomposed into two contributions, namely 
a contribution fiom the centre motion which is common to all vortex tubes around the 
periodic orbit in question, and individual terms which depend on the quantum number n of 
the individual quantized flux tubes. 

Sometimes good analytic descriptions are available for the centre motion, as for the 
small-amplitude periodic orbit of present Duffing oscillator. However, in cases where no 
analytic solutions are available the narrow-tube formulae are easy to use numerically. The 
location of the periodic centre motion of the nonlinear system is found by a standard 
Newton routine, making use of the linearized variational equation for the system. With 
the localization of the centre one can also include the calculation of (Lp(t)),. In addition, 
certain real and periodic solutions of an auxiliary Milne equation play an essential role in the 
narrow-tube formula. In a separate program the nonlinear system equations are calculated 
again, now with the correct initial condition for the periodic response, including also the 
corresponding Milne equation for which the periodic solution can be found by a Newton 
algorithm, as before. Good initial conditions are provided by the adiabatic periodic Milne 
solution in our calculations. One can also find the quantities (p-’(t)) ,  and (p4(t)) ,  by 
integrating over a single period in the last Newton iteration. 

We also would l i e  to draw attention to a completely different approach to semiclassical 
eigenvalue quantization based on Gutzwiller’s periodic orbit theory, which has been applied 
almost exclusively to chaotic, time-independent Hamiltonian systems (with two or more 
degrees of freedom) allowing only unstable periodic motion. However, in a remarkable 
study of time-independent Hamiltonian systems, Miller [ 111 eliminates some of the principle 
shortcomings of Gutzwiller’s original theory for isolated elliptic islands and arrives at 
an interesting formula expressing the quantized energies as the sum of two classes of 
contributions: one is associated to the stable periodic orhit itself and the other contribution 
is generated by deviating, harmonic (normal mode) vibrations about the centre motion. 
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This result of Miller has a striking similarity to our result for a time-periodic Hamiltonian 
system. In the leading-order narrow-tube limit our quasi-energy formula (31). with the 
trivial Brillouin-zone contribution included [12]. is given by 

where o = 2zJT is the angular frequency of the periodic response induced by the extemal 
forcing; The first two terms of this formula give the quasi-energy contribution from the 
time dependence of the periodic orbit. The differences compared to Miller's formula (224) 
originate ffom a periodicity requirement in time rather than confinement (and quantization) 
in space along the trajectory. The deviating, parametrically driven, harmonic vibrations 
about the centre motion result in the contribution of the third term in the above formula. 
The harmonic oscillator deviations of Miller are replaced by parametrically driven harmonic 
oscillator deviations in our case, with (p-*(t)), being the averaged angular frequency 
(angular winding frequency). 

Further research is needed to understand the general validity of local approximations of 
the type presented here, and what happens, in particular, at the critical situations where the 
nested tubes are broken up into different types by hyperbolic fixed points (unstable periodic 
trajectories) of the Poincar.6 map. 

Acknowledgment 

Support by the Swedish Natural Science Research Council is gratefully acknowledged. 

References 

[l] Sank H 1973 Phys. Rev. 7 '2203 
[Z] Breuer H P and Holthaus M 1991 Ann. Pkys. 211 249 
131 Bensch F 1993 semiclassical quantization and decay dynamics in time-periodic systems Doeroral Thais 

141 Bensch P. Komh H I. Mirbach B and Ben-Tal N 1993 J. Phys. A: Mafh. Gem 25 6791 
151 Tabor M 1989 Chnor mrd Inregrabilify in Non-linear Dynamics (New York: Wiley) 
161 Percival I C and Richards D 1982 lntmduction Io Dynomics (Cambridge: Cambridge Universitr FTess) 
[I h o l d  V I 1984 Mnfhemtical Merho& ofCIaSsica1 Mechanics (Berlin: Springer) 
[SI Hayashi C 1964 Nonlincar Oscilladonr in Physical Systems (New York: McGraw-Hill) 
191 Kevorkian J and Cole 1 D 1985 Perlurbation Mcflwdt in Applied Marhemorics (Applied Mafhmafical 

[IO] Lewis H R 1968 J. Mark. Phys. 9 1976 
[I 11 Miller W H 1975 J, Chem. Phys. 63 996 

Kaiserslantern 

Sciences 34) (Berlin. Splinger) 


